58 research outputs found

    Long-Range Connections in Transportation Networks

    Full text link
    Since its recent introduction, the small-world effect has been identified in several important real-world systems. Frequently, it is a consequence of the existence of a few long-range connections, which dominate the original regular structure of the systems and implies each node to become accessible from other nodes after a small number of steps, typically of order logN\ell \propto \log N. However, this effect has been observed in pure-topological networks, where the nodes have no spatial coordinates. In this paper, we present an alalogue of small-world effect observed in real-world transportation networks, where the nodes are embeded in a hree-dimensional space. Using the multidimensional scaling method, we demonstrate how the addition of a few long-range connections can suubstantially reduce the travel time in transportation systems. Also, we investigated the importance of long-range connections when the systems are under an attack process. Our findings are illustrated for two real-world systems, namely the London urban network (streets and underground) and the US highways network enhanced by some of the main US airlines routes

    The simplicity of planar networks

    Get PDF
    Shortest paths are not always simple. In planar networks, they can be very different from those with the smallest number of turns - the simplest paths. The statistical comparison of the lengths of the shortest and simplest paths provides a non trivial and non local information about the spatial organization of these graphs. We define the simplicity index as the average ratio of these lengths and the simplicity profile characterizes the simplicity at different scales. We measure these metrics on artificial (roads, highways, railways) and natural networks (leaves, slime mould, insect wings) and show that there are fundamental differences in the organization of urban and biological systems, related to their function, navigation or distribution: straight lines are organized hierarchically in biological cases, and have random lengths and locations in urban systems. In the case of time evolving networks, the simplicity is able to reveal important structural changes during their evolution.Comment: 8 pages, 4 figure

    On time-varying collaboration networks

    Full text link
    The patterns of scientific collaboration have been frequently investigated in terms of complex networks without reference to time evolution. In the present work, we derive collaborative networks (from the arXiv repository) parameterized along time. By defining the concept of affine group, we identify several interesting trends in scientific collaboration, including the fact that the average size of the affine groups grows exponentially, while the number of authors increases as a power law. We were therefore able to identify, through extrapolation, the possible date when a single affine group is expected to emerge. Characteristic collaboration patterns were identified for each researcher, and their analysis revealed that larger affine groups tend to be less stable

    Mapping road network communities for guiding disease surveillance and control strategies

    Full text link
    Human mobility is increasing in its volume, speed and reach, leading to the movement and introduction of pathogens through infected travelers. An understanding of how areas are connected, the strength of these connections and how this translates into disease spread is valuable for planning surveillance and designing control and elimination strategies. While analyses have been undertaken to identify and map connectivity in global air, shipping and migration networks, such analyses have yet to be undertaken on the road networks that carry the vast majority of travellers in low and middle income settings. Here we present methods for identifying road connectivity communities, as well as mapping bridge areas between communities and key linkage routes. We apply these to Africa, and show how many highly-connected communities straddle national borders and when integrating malaria prevalence and population data as an example, the communities change, highlighting regions most strongly connected to areas of high burden. The approaches and results presented provide a flexible tool for supporting the design of disease surveillance and control strategies through mapping areas of high connectivity that form coherent units of intervention and key link routes between communities for targeting surveillance.Comment: 11 pages, 5 figures, research pape

    The relationship between structure and function in locally observed complex networks

    Get PDF
    Recently, studies looking at the small scale interactions taking place in complex networks have started to unveil the wealth of interactions that occur between groups of nodes. Such findings make the claim for a new systematic methodology to quantify, at node level, how dynamics are influenced (or differentiated) by the structure of the underlying system. Here we define a new measure that, based on the dynamical characteristics obtained for a large set of initial conditions, compares the dynamical behavior of the nodes present in the system. Through this measure, we find that the geographic and Barabasi-Albert' models have a high capacity for generating networks that exhibit groups of nodes with distinct dynamics compared to the rest of the network. The application of our methodology is illustrated with respect to two real systems. In the first we use the neuronal network of the nematode Caenorhabditis elegans to show that the interneurons of the ventral cord of the nematode present a very large dynamical differentiation when compared to the rest of the network. The second application concerns the SIS epidemic model on an airport network, where we quantify how different the distribution of infection times of high and low degree nodes can be, when compared to the expected value for the network.FAPESP (05/00587-5, 2011/22639-8, 2010/16310-0)CNPq (301303/06-1, 573583/2008-0

    How Many Nodes are Effectively Accessed in Complex Networks?

    Get PDF
    The measurement called accessibility has been proposed as a means to quantify the efficiency of the communication between nodes in complex networks. This article reports important results regarding the properties of the accessibility, including its relationship with the average minimal time to visit all nodes reachable after hh steps along a random walk starting from a source, as well as the number of nodes that are visited after a finite period of time. We characterize the relationship between accessibility and the average number of walks required in order to visit all reachable nodes (the exploration time), conjecture that the maximum accessibility implies the minimal exploration time, and confirm the relationship between the accessibility values and the number of nodes visited after a basic time unit. The latter relationship is investigated with respect to three types of dynamics, namely: traditional random walks, self-avoiding random walks, and preferential random walks.Comment: 8 pages and 7 figure

    Mitochondrial Network Size Scaling in Budding Yeast

    Get PDF
    Mitochondria must grow with the growing cell to ensure proper cellular physiology and inheritance upon division. We measured the physical size of mitochondrial networks in budding yeast and found that mitochondrial network size increased with increasing cell size and that this scaling relation occurred primarily in the bud. The mitochondria-to-cell size ratio continually decreased in aging mothers over successive generations. However, regardless of the mother's age or mitochondrial content, all buds attained the same average ratio. Thus, yeast populations achieve a stable scaling relation between mitochondrial content and cell size despite asymmetry in inheritance.Sandler Postdoctoral FellowshipSandler Postdoctoral FellowshipHerbert Boyer Junior Faculty Endowed Chair AwardHerbert Boyer Junior Faculty Endowed Chair AwardNIHNIH [R01GM097017, R01GM070808, R01GM026259, P50Gm081879, 5RO1GM097213-02]NIH National Research Service Award fellowshipNIH National Research Service Award fellowshipFundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao de Amparo a Pesquisa do Estado de Sao Paulo [05/00587-5, 07/50882-9]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico [301303/06-1]Conselho Nacional de Desenvolvimento Cientifico e TecnologicoPackard FellowshipPackard FellowshipChina Scholarship Council (CSC) scholarshipChina Scholarship Council (CSC) scholarshipBoyer Postdoctoral FellowshipBoyer Postdoctoral Fellowshi
    corecore